Category	Basic subjects		
(科目区分)			
Course Title	Recombinant DNA technology		
(授業科目名)			
Instructors	Takashi Ebihara	Academic Year	1,2
(担当者名)		(配当年次)	
Required Course /		Credits	
Elective Course (必修/選択)	Elective Cpourse	(単位数)	1
(必修/選択) Class Format		(+1230)	
	Webclass		
(授業形態)			
Schedule	TDD		
(開講期間)	TBD		
Class Date/Period	TDD		
(開講曜日・時間)	TBD		

Course Outline/ Course Objectives (授業の概要・到達目標)

Aims: To learn how to make vectors and reconbinant animals

Course Outline: Lectures will be given by webclass. You need to submit a report regarding vector construction.

Course Planning (授業計画)

	Course Outline/ Course Objectives(授業の概要及び到達目標)	Instructor	Department (講座名)
	(Contents of Class) ((授業内容))	(担当教員名)	Class Room〔実施場所〕
1	Digestion of DNA by Restriction Enzymes		Department of Biological Informatics and Experimental Therapeutics,
2	Electrophoresis, DNA purification, ligation	Prof. Kota Saito	
3	Transformation of ligated DNAs on E.Coli		
4	Insert check by colony PCR-1		
5	Insert check by colony PCR-2		
6	Transfection of the vector into cultured cells		Dpt. of Medical Biology (Webclass)
7	In vitro methods for overexpression	Prof. Takashi Ebihara	
8	In vitro methods for knockdown or knockout		
9	Generation of genetically-modified mouse for overexpression		
10	Generation of genetically-modified mouse for knockouts		

Grading Criteria (成績評価の基準と方法)

Grades will be given based on attendance, attitude to this course, and a report.

Contact Information (問い合わせ先(氏名,メールアドレス等))

Takashi Ebihara, tebihara@med.akita-u.ac.jp Kota Saito, ksaito@med.akita-u.ac.jp

Comment (その他特記事項)

Textbooks and reference papers will be suggested, if needed.

Students are expected to prepare for this course by reading the relevant protocols.